๐ฅ Penyelesaian Persamaan Linear 3 Variabel Dengan Matriks
AipSaripudin Bab 3 Matriks, Sistem Persamaan Linear, dan Determinan - 33 3.1 Matriks dan Operasinya 3.1.1 Pengertian Matriks Matriks adalah susunan teratur beberapa bilangan atau fungsi di dalam sebuah kurung. Bilangan atau fungsi tersebut disebut unsur (elemen) matriks. Beberapa contoh matriks sebagai berikut. 3 0 1 1 3 6 2 5 4, 2 1, 3 6 1, c d
Desem. Sistem Persamaan Linear Tiga Variabel (SPLTV) adalah sebuah persamaan yang terdiri atas tiga persamaan linear yang masing-masing persamaan memiliki tiga variabel yang berpangkat satu. Untuk lebih jelasnya pahami dahulu konsep persamaan linear tiga variabel sebagai berikut. ax + by + cz = d.
MatematikaKelas 8 | Cara Menyelesaikan Sistem Persamaan Linear Dua Variabel (SPLDV) SISTEM PERSAMAAN LINEAR DAN PERTIDAKSAMAAN DUA VARIABEL | catarina dyah. Pertidaksamaan Linear Dua Variabel. Penyelesaian Sistem Persamaan Linear Dua Variabel Dengan 3 Metode. โ Sistem Persamaan Linier Kuadrat Dua Variabel: Materi, Contoh Soal
Sistempersamaan linear 3 variabel, merupakan himpunan 3 buah persamaan dengan variabel sebanyak 3. Penyelesaian sistem persamaan linear dengan menggunakan metode gabungan/ campuran merupakan cara menyelesaikan dengan menggunakandua metode sekaligus, yakni metode eliminasi โ subtitusi atau subtitusi โ eliminasi. Dalam
Persamaanlinear dua variabel memiliki bentuk umum: ax + by = c dengan a dan b adalah koefisien, sedangkan c adalah konstanta, x dan y adalah variabel. Contoh 2.3: Carilah penyelesaian dari 2x + y = 4 Jawab: Jika x = 0, maka 2 (0) + y = 4, sehingga y = 4. Jadi penyelesaiannya adalah (0,4) Jika x = 1, maka 2 (1) + y = 4, sehingga y = 2.
Persamaanberikut merupakan persamaan linear : a. x + 3y = 7 b. y = 5x + 3z + 1 Persamaan berikut bukan persamaan linear : c. x2 + 3y = 5 d. y โ sin x = 0 Himpunan berhingga dari persamaan linear- persamaan linear dalam n variable x1, x2, , xn dinamakan sistem persamaan linear atau sistem linear. Bentuk umum sistem persamaan linear
Tentukanhimpunan penyelesaian sistem persamaan berikut dengan metode subtitusi! a. x + y= 2 dan x โ y = 8 b. x โ 2y = 5 dan x + y = 11 Pembahasan: a. Diketauhi: x + y= 2 (Persamaan 1) x โ y = 8 (Persamaan 2) Langkah pertama, buatlah persamaan 3 x + y = 2 x = 2 โ y (Persamaan 3) Lengkah kedua, subtitusikan persamaan 3
Menentukaninvers dari matriks yaitu : Nah, sekarang, supaya lebih jelas, berikut cara menyelesaikan persamaan linear dengan matriks dan contohnya untuk dua variabel. Contoh Soal Sistem Persamaan Linear Tiga Variabel 2019 Mengubah persamaan linear kebentuk matriks. Contoh soal sistem persamaan linear dengan matriks. Contoh soal matriks 2 dan
Penyelesaianatau himpunan penyelesaian dari sebuah sistem persamaan linear tiga variabel (SPLTV) bisa di cari dengan menggunakan beberapa cara atau metode, antara lain dengan menggunakan: Metode subtitusi Metode eliminasi Metode gabungan atau campuran Metode determinan Metode invers matriks
. Matematika Dasar ยป Sistem Persamaan Linear โบ Menyelesaikan Sistem Persamaan Linear Tiga Variabel Sistem Persamaan Linear Sistem persamaan linear tiga variabel SPLTV adalah sistem persamaan yang terdiri dari tiga persamaan di mana masing-masing persamaan memiliki tiga variabel. Kita dapat menyelesaikan SPLTV dengan dua cara yakni cara substitusi dan eliminasi. Oleh Tju Ji Long Statistisi Hub. WA 0812-5632-4552 Sistem persamaan linear tiga variabel adalah sistem persamaan yang terdiri dari tiga persamaan di mana masing-masing persamaan memiliki tiga variabel. Sama halnya pada sistem persamaan linear dua variabel SPLDV, kita dapat menyelesaikan atau mencari himpunan penyelesaian dari sistem persamaan linear tiga variabel SPLTV dengan dua cara atau metode, yakni metode substitusi dan metode eliminasi. Metode Substitusi Berikut adalah langkah-langkah untuk menerapkan metode substitusi pada sistem persamaan linear tiga variabel SPLTV Ubah salah satu persamaan pada sistem persamaan dan nyatakan \x\ sebagai fungsi dari \y\ dan \z\, atau \y\ sebagai fungsi dari \x\ dan \z\, atau \z\ sebagai fungsi dari \x\ dan \y\. Substitusi fungsi \x\ atau \y\ atau \z\ dari Langkah 1 pada dua persamaan lain sehingga diperoleh sistem persamaan linear dua variabel SPLDV. Selesaikan sistem persamaan linear dua variabel SPLDV tersebut. Kita telah membahas penyelesaian SPLDV, sehingga tidak akan dijelaskan lagi di sini. Contoh 1 Tentukan nilai \x\, \y\ dan \z\ dari sistem persamaan linear tiga variabel berikut. Pembahasan Kita akan menggunakan metode substitusi dengan mengikuti langkah-langkah yang dijelaskan di atas. Langkah 1 Ubah persamaan pertama anda bebas mengubah persamaan manapun sehingga diperoleh \z\ sebagai fungsi dari \x\ dan \y\, yakni Langkah 2 Substitusi persamaan iv ke persamaan lain yakni persamaan dua dan tiga, lalu lakukan penyederhanaan. Kita peroleh Perhatikan bahwa kita telah memperoleh nilai \x\ dan \y\, yakni \x = -5\ dan \y = -3\. Dengan mensubstitusi nilai \x\ dan \y\ pada persamaan iv, kita peroleh nilai \z\ yakni Jadi, nilai \x, y\ dan \z\ yang memenuhi sistem persamaan linear tiga variabel tersebut adalah \x = -5, \ y = -3, \ z = 2\ atau kita nyatakan dengan \x,y,z= -5,-3,2\. Perhatikan bahwa dari Contoh 1, kita hanya menggunakan dua langkah dan berhasil mendapatkan nilai \x\ dan \y\ sehingga kita tidak memerlukan langkah 3. Ini hanya kebetulan saja. Sering kali, kita harus menggunakan langkah ketiga. Oleh karena itu, kita akan memberikan satu Contoh lagi. Contoh 2 Carilah himpunan penyelesaian dari sistem persamaan linear tiga variabel SPLTV berikut ini dengan metode substitusi. Pembahasan Pertama, kita tentukan dulu persamaan yang paling sederhana dari ketiga persamaan yang ada. Dalam hal ini, persamaan pertama tampak lebih sederhana sehingga kita ubah persamaan pertama dan diperoleh \x\ sebagai fungsi dari \y\ dan \z\. Substitusi variabel \x\ dalam persamaan iv ke persamaan 2. Kita peroleh Substitusi variabel \x\ dalam persamaan iv ke persamaan 3. Kita peroleh Persamaan v dan vi membentuk sistem persamaan linear dua variabel SPLDV dalam variabel \y\ dan \z\, yakni Kita akan menyelesaikan SPLDV ini, sehingga diperoleh nilai untuk variabel \y\ dan \z\. Dari persamaan vi, kita peroleh Substitusi variabel \y\ ke dalam persamaan persamaan v, sehingga diperoleh Substitusi nilai \z = 7\ yang kita peroleh di atas ke salah satu persamaan SPLDV, misalnya \y - z = -4\. Kita peroleh Terakhir, substitusi nilai \y = 3\ dan \z = 7\ ke salah satu dari SPLTV, misalnya \ x-2y + z = 6 \ sehingga kita peroleh Jadi, nilai \x, y\ dan \z\ yang memenuhi SPLTV tersebut adalah \x,y,z = 5, 3, 7\. Metode Eliminasi Berikut adalah langkah-langkah yang diperlukan untuk menerapkan metode eliminasi Ambil sembarang dua persamaan dari tiga persamaan yang ada misal persamaan 1 dan 2, atau persamaan 1 dan 3 atau persamaan 2 dan 3. Lalu, menyamakan salah satu koefisien dari variabel \x\ atau \y\ atau \z\ dari kedua persamaan yang diambil dengan cara mengalikan konstanta yang sesuai. Setelah itu, eliminasi atau hilangkan variabel yang memiliki koefisien yang sama dengan cara menambahkan atau mengurangkan kedua persamaan sehingga diperoleh persamaan baru dengan dua variabel. Lakukan hal yang sama seperti Langkah 1 pada pasangan persamaan lain. Dari Langkah 1 dan 2, kita peroleh sistem persamaan linear dua variabel. Lalu, selesaikan SPLDV tersebut. Tuliskan penyelesaiannya dalam \x,y,z\. Contoh 3 Carilah nilai \x, y\ dan \z\ yang memenuhi sistem persamaan linear tiga variabel berikut Pembahasan Kita akan menggunakan metode eliminasi dengan mengikuti langkah-langkah yang dijelaskan di atas. Langkah 1 Ambil dua persamaan yakni persamaan 1 dan 2. Karena koefisien variabel \z\ adalah sama, maka kita akan eliminasi variabel \z\ dengan cara menambahkan kedua persamaan tersebut sehingga diperoleh persamaan baru dengan dua variabel yakni \x\ dan \y\. Langkah 2 Ulangi Langkah 1 pada pasangan persamaan lain. Kita ambil pasangan persamaan 2 dan 3. Kita perlu eliminasi variabel z dengan cara mengalikan persamaan 2 dengan nilai 2 dan persamaan tiga dengan nilai 1, yakni Langkah 3 Dari Langkah 2, kita peroleh nilai \x = 5\. Dengan substitusi nilai \x\ ke persamaan iv kita peroleh nilai \y\, yakni Substitusi nilai \x\ dan \y\ pada persamaan 2 anda bebas memilih salah satu dari tiga persamaan yang diberikan pada soal. Kita peroleh Langkah 4 Jadi, penyelesaian dari sistem persamaan linear tiga variabel tersebut adalah \x,y,z = 5, 3, -1\. Cukup sekian ulasan singkat mengenai cara menyelesaikan sistem persamaan linear tiga variabel SPLTV dalam artikel ini. Terima kasih telah membaca artikel ini sampai selesai. Jika Anda merasa artikel ini bermanfaat, boleh dibantu share ke teman-temannya, supaya mereka juga bisa belajar dari artikel ini. Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan tuliskan komentar Anda dengan bahasa yang sopan.
4. Penyelesaian SPLTV Metode Determinan Langkah-langkah untuk menentukan himpunan penyelesaian SPLTV dengan metode determinan adalah sebagai berikut. Langkah Pertama, ubahlah sistem persamaa linear tiga variabel ke dalam bentuk matriks, yaitu sebagai berikut. Misalkan terdapat sistem persamaan berikut. a1x + b1y + c1z = d1 a2x + b2y + c2z = d2 a3x + b3y + c3z = d3 persamaan di atas kita ubah menjadi bentuk berikut A . X = B โฆโฆโฆโฆโฆ Pers. 1 Dengan A = a1 b1 c1 a2 b2 c2 a3 b3 c3 Sehingga persamaan 1 di atas menjadi bentuk matriks berikut. a1 b1 c1 x = d1 a2 b2 c2 y d2 a3 b3 c3 z d3 Langkah Kedua, tentukan nilai determinan matriks A D, determinan x Dx determinan y Dy dan determinan z Dz dengan persamaan berikut. D = a1 b1 c1 a1 b1 = a1b2c3 + b1c2a3 + c1a2b3 โ a3b2c1 + b3c2a1 + c3a2b1 a2 b2 c2 a2 b2 a3 b3 c3 a3 b3 D adalah determinan dari matriks A. Dx = d1 b1 c1 d1 b1 = d1b2c3 + b1c2d3 + c1d2b3 โ d3b2c1 + b3c2d1 + c3d2b1 d2 b2 c2 d2 b2 d3 b3 c3 d3 b3 Dx adalah determinan dari matriks A yang kolom pertama diganti dengan elemen-elemen matriks B. Dy = a1 d1 c1 a1 d1 = a1d2c3 + d1c2a3 + c1a2d3 โ a3d2c1 + d3c2a1 + c3a2d1 a2 d2 c2 a2 d2 a3 d3 c3 a3 d3 Dy adalah determinan dari matriks A yang kolom kedua diganti dengan elemen-elemen matriks B. Dz = a1 b1 d1 a1 b1 = a1b2d3 + b1d2a3 + d1a2b3 โ a3b2d1 + b3d2a1 + d3a2b1 a2 b2 d2 a2 b2 a3 b3 d3 a3 b3 Dz adalah determinan dari matriks A yang kolom ketiga diganti dengan elemen-elemen matriks B. Langkah Ketiga, tentukan nilai x dan y dengan persamaan berikut. Contoh Soal Dengan menggunakan metode determinan, tentukanlah himpunan penyelesaian dari sistem persamaan berikut ini. 2x + y + z = 12 x + 2y โ z = 3 3x โ y + z = 11 Jawab Mengubah SPLTV ke bentuk matriks Pertama, kita ubah sistem persamaan yang ditanyakan dalam soal ke bentuk matriks berikut. 2 1 1 x = 12 1 2 โ1 y 3 3 โ1 1 z 11 Kedua, kita tentukan nilai D, Dx, Dy dan Dz dengan ketentuan seperti pada langkah-langkah di atas. Menentukan nilai D D = 2 1 1 2 1 1 2 โ1 1 2 3 โ1 1 3 โ1 D = [221 + 1โ13 + 11โ1] โ [321 + โ1โ12 + 111] D = [4 โ 3 โ 1] โ [6 + 2 + 1] D = 0 โ 9 D = โ9 Menentukan nilai Dx Dx = 12 1 1 12 1 3 2 โ1 3 2 11 โ1 1 11 โ1 Dx = [1221 + 1โ111 + 13โ1] โ [1121 + โ1โ112 + 131] Dx = [24 โ 11 โ 3] โ [22 + 12 + 3] Dx = 10 โ 37 Dx = โ27 Menentukan nilai Dy Dy = 2 12 1 2 12 1 3 โ1 1 3 3 11 1 3 11 Dy = [231 + 12โ13 + 1111] โ [331 + 11โ12 + 1112] Dy = [6 โ 36 + 11] โ [9 โ 22 + 12] Dy = โ19 โ โ1 Dy = โ18 Menentukan nilai Dz Dz = 2 1 12 2 1 1 2 3 1 2 3 โ1 11 3 โ1 Dz = [2211 + 133 + 121โ1] โ [3212 + โ132 + 1111] Dz = [44 + 9 โ 12] โ [72 โ 6 + 11] Dz = 41 โ 77 Dz = โ36 Menentukan nilai x, y, z Setelah nilai D, Dx, Dy, dan Dz kita peroleh, langkah terakhir adalah menentukan nilai x, y, dan z menggunakan rumus berikut ini. Dengan demikian, himpunan penyelesaian dari sistem persamaan linear 3 variabel di atas adalah HP = {3, 2, 4}. 5. Penyelesaian SPLTV Metode Invers Matriks Jika A dan B adalah matriks persegi dan berlaku A . B = B . A = 1, maka dikatakan matriks A dan B saling invers. B disebut invers dari A atau ditulis B = A-1. Matriks yang mempunyai invers disebut invertible atau matriks non singular. Sedangkan matriks yang tidak mempunyai invers disebut matriks singular. Untuk mencari invers matriks persegi berordo 3ร3, coba kalian perhatikan contoh berikut ini. Jika A = a1 b1 c1 Dengan det A โ 0 a2 b2 c2 a3 b3 c3 Maka invers dari matriks A ditulis A-1 dirumuskan sebagai berikut. A-1 = 1/determinan Aadjoin A A-1 = 1 adj a1 b1 c1 a2 b2 c2 det A a3 b3 c3 Jika det A = 0, maka matriks tersebut tidak mempunyai invers atau disebut matriks singular. Untuk menentukan nilai determinan dan adjoin dari matriks A dapat digunakan cara berikut. Determinan matriks A Dari matriks A tambahkan 2 kolom di sebalah kanan. Kolom keempat berisi elemen dari kolom pertama, sedangkan kolom kelima berisi elemen dari kolom kedua matriks A. Sehingga matriks A menjadi seperti berikut. A = a1 b1 c1 a1 b1 a2 b2 c2 a2 b2 a3 b3 c3 a3 b3 Kemudian kalikan elemennya secara diagonal, pertama kalikan searah sejajar dengan diagonal utama. Ada tiga hasil perkaliannya, yaitu a1b2c3, b1c2a3, dan c1a2b3. Ketiga hasil perkalian elemen matriks tersebut bertanda positif. Perhatika diagram perkalian matriks berikut ini. + + + A = a1 b1 c1 a1 b1 a2 b2 c2 a2 b2 a3 b3 c3 a3 b3 Setelah itu, kalian searah dengan sejajar diagonal samping. Ada tiga hasil perkaliannya, yaitu a3b2c1, b3c2a1, dan c3a2b1. Ketiga hasil perkalian elemen matriks ini bertanda negatif. Perhatikan diagram perkalian matriks berikut. โ โ โ A = a1 b1 c1 a1 b1 a2 b2 c2 a2 b2 a3 b3 c3 a3 b3 Determinan dari matriks A adalah jumlah semua hasil perkalian bertandanya yakni det A = a1b2c3 + b1c2a3 + c1a2b3 + โa3b2c1 + โb3c2a1 + โc3a2b1 det A = a1b2c3 + b1c2a3 + c1a2b3 โ a3b2c1 + b3c2a1 + c3a2b1 Adjoin matriks A Untuk menentukan nilai adjoin matriks A digunakan rumus berikut. Adj A = matriks kofaktor AT Jadi sebelum dapat menentukan nilai adjoin, kita harus menentukan dahulu matriks kofaktor A yang ditranspose. Matriks Kofaktor A [kofA] Elemen-elemen matriks kofaktor A adalah sebagai berikut. kofA = K11 K12 K13 K21 K22 K23 K31 K32 K33 Kesembilan elemen K tersebut dapat tentukan dengan menggunakan minor-kofaktor yang dirumuskan sebagai berikut. K11 = โ11 + 1 M11 M11 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris dan kolom pertama matriks A. M11 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M11 = b2 c2 = b2c3 โ b3c2 b3 c3 Dengan demikian, nilai dari K11 adalah sebagai berikut. K11 = โ11 + 1 [b2c3 โ b3c2] K12 = โ11 + 2 M12 M12 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris pertama dan kolom kedua matriks A. M12 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M12 = a2 c2 = a2c3 โ a3c2 a3 c3 Dengan demikian, nilai dari K12 adalah sebagai berikut. K12 = โ11 + 2 [a2c3 โ a3c2] K13 = โ11 + 3 M13 M13 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris pertama dan kolom ketiga matriks A. M13 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M13 = a2 b2 = a2b3 โ a3b2 a3 b3 Dengan demikian, nilai dari K13 adalah sebagai berikut. K13 = โ11 + 3 [a2b3 โ a3b2] K21 = โ12 + 1 M21 M21 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris kedua dan kolom pertama matriks A. M21 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M21 = b1 c1 = b1c3 โ b3c1 b3 c3 Dengan demikian, nilai dari K21 adalah sebagai berikut. K21 = โ12 + 1 [b1c3 โ b3c1] K22 = โ12 + 2 M22 M22 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris kedua dan kolom kedua matriks A. M22 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M22 = a1 c1 = a1c3 โ a3c1 a3 c3 Dengan demikian, nilai dari K22 adalah sebagai berikut. K22 = โ12 + 2 [a1c3 โ a3c1] K23 = โ12 + 3 M23 M23 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris kedua dan kolom ketiga matriks A. M23 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M23 = a1 b1 = a1b3 โ a3b1 a3 b3 Dengan demikian, nilai dari K23 adalah sebagai berikut. K23 = โ12 + 3 [a1b3 โ a3b1] K31 = โ13+ 1 M31 M31 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris ketiga dan kolom pertama matriks A. M31 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M31 = b1 c1 = b1c2 โ b2c1 b2 c2 Dengan demikian, nilai dari K31 adalah sebagai berikut. K31 = โ13 + 1 [b1c2 โ b2c1] K32 = โ13+ 2 M32 M32 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris ketiga dan kolom kedua matriks A. M32 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M32 = a1 c1 = a1c2 โ a2c1 a2 c2 Dengan demikian, nilai dari K32 adalah sebagai berikut. K32 = โ13 + 2 [a1c2 โ a2c1] K33 = โ13+ 3 M33 M33 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris ketiga dan kolom ketiga matriks A. M33 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M33 = a1 b1 = a1b2 โ a2b1 a2 b2 Dengan demikian, nilai dari K33 adalah sebagai berikut. K33 = โ13 + 3 [a1b2 โ a2b1] Matriks Kofaktor A Transpose [kofAT] Transpose dari matriks kofaktor A diperoleh dengan cara mengubah baris menjadi kolom dan kolom menjadi baris. Perhatikan cara berikut. kofA = K11 K12 K13 K21 K22 K23 K31 K32 K33 [kofA]T = K11 K21 K31 K12 K22 K32 K13 K23 K33 Dengan demikian, nilai adjoin dari matriks A adalah sebagai berikut Adj A = matriks kofaktor AT Adj A = K11 K21 K31 K12 K22 K32 K13 K23 K33
- Tahukah kamu bahwa penyelesaian sistem persamaan linear tiga variabel SPLTV dapat diselesaikan selain menggunakan metode eliminasi dan substitusi, juga dapat dicari dengan metode determinan dan invers matriks? Untuk lebih jelasnya mengenai bagaimana cara penyelesaian SPLTV dengan metode determinan dan invers matriks, mari simak pembahasan di umum, bentuk dari SPLTV adalah sebagai berikut FAUZIYYAH Bentuk umum sistem persamaan linear tiga variabel Karena penyelesaian SPLTV dengan metode determinan dan invers menggunakan konsep matriks, maka SPLTV di atas harus kita ubah dalam bentuk matriks. Baca juga Metode Eliminasi dan Substitusi SPLTVMatriks SPLTV dapat kita tulis menjadi AX=B seperti di bawah FAUZIYYAH Bentuk umum sistem persamaan linear tiga variabel ditulis dalam bentuk matriks Metode Determinan Dilansir dari The Pearson Complete Guide to the AIEEE oleh Dorling Kindersley tahun 2007, determinan adalah bilangan murni yang berasosiasi dengan matriks persegi, yang memiliki angka dan nilai tetap. Determinan matriks A yang kita asumsikan dengan D, diperoleh dengan mencari determinan dari elemen-elemen tersebut. FAUZIYYAH Determinan matriks A D Baca juga Mendefinisikan Sistem Persamaan Linear Tiga Variabel SPLTV
penyelesaian persamaan linear 3 variabel dengan matriks